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Abstract: We wish to understand what kind of unimolecular theory should be applied to very large molecules, in the size 
range of enzyme-substrate complexes. As a preliminary to a trajectory test of the RRKM theory, we have studied the limiting 
behavior of RRKM rate constants when the number of atoms increases. Rates of chain breaking approach zero for bonds near 
the center of chains, but remain finite and nonzero for end-atom detachment, ring opening at single bonds, and a selection of 
concerted ring openings involving two bond scissions. These results are remarkably insensitive to the dimensionality and so
phistication of the molecular models employed. 

Our long-range interest in this series of problems stems 
from curiosity about the unimolecular behavior of enzyme-
substrate complexes. We intend to make a trajectory study 
simulating the reactions of very large molecules. But a fore
ground problem interposes itself, and we deal with it here. The 
conventional RRKM model1 of these processes, implying rapid 
intramolecular redistribution of energy, has been applied to 
specific cases of molecules of modest complexity on the bio
logical or polymeric scale. No one knows what, if any, limits 
its predictions approach as molecular size becomes indefinitely 
great. Does it say that rates will approach zero, infinity, or a 
finite value? There is little point in testing the RRKM model 
with trajectories if conditions are such that its predictions are 
clearly unreasonable. Answering this question seems to us a 
sensible first step toward finding out what kind of theoretical 
vocabulary is required in a discussion of the efficacy of bio
logical catalysts and the rates of other reactions of large mol
ecules. 

Our tactics are to construct a series of artificial molecular 
models for which RRKM analysis can be carried out as a 
function of the number of subunits present. These are then 
examined for asymptotic behavior. We wish to learn whether 
there is a trend in the conclusions as the complexity and realism 
of the various models increases. Our eventual dynamical model 
for simulation will be chosen from among them. 

Consider the simple rate constant expression 

k-Dl(E-E0)/E]*-1 (1) 

*=(jW) (nV)"1 (2) 
which is the classical limit of RRKM theory. The threshold 
energy for the reaction is E0, the energy is E, there is a set of 
s effective classical oscillators having frequencies i/,-* in the 
molecule, and the critical configuration has s — 1 effective 
modes with frequencies c,+. (The phrases "activation energy" 
and "activated complex" may be substituted for "threshold 
energy" and "critical configuration" without intolerable im
precision, in this work.) As 5 becomes large the average value 
of energy pool E does also; on the other hand, in a molecule 
with a large skeleton there will also appear some very low vi
bration frequencies. Thus it is not immediately clear which 
term in (1) will dominate. 

We deal first with the energy term. The average vibrational 
energy will be sRT. Express it in terms of s, also £o as vRT, 
v being constant at around 10-100, a bond property. 

[(E - E0)/EY~l = (1 - v/s)'-1 = 1 - (s - \)u/s 
+ (s- l)(s - 2)v2/2\s2 + . . . (3) 

* Deceased. Address correspondence to F.-M. Wang, Department of Chemistry, 
Dalhousie University, Halifax, N. S. B3H 4J3, Canada. 

The series converges since s > v or else the reaction is ener
getically infeasible. When 5 » v, the series becomes that for 
exp(-j;), a fairly small constant but not zero. This is ap
proached from below, as can be verified by evaluation of the 
case s = v + 1. Evidently continuously increasing the equi-
partition thermal energy of the molecule, by adding more 
atoms, leads to a stable limit. Its magnitude will be influenced 
by quantum-statistical effects; the important point here is that 
the rate constant neither vanishes nor blows up with 5. The 
problem then devolves upon the v. 

An Illustrative Simple Model 

Since we do not intend to obscure the physical significance 
of each model employed with cumbersome mathematical ex
pressions, most of the details of computation have been left out 
in this work. However, to show the procedure in a way that does 
not require computational assistance, we analyze first a one-
dimensional Markov chain of identical masses connected by 
identical bonds. More realistic models follow. For polymeric 
long chains, the results of this simple model serve as an ample 
demonstration. 

Suppose there are N atoms, and that a piece of the molecule 
having R atoms is to be detached in a unimolecular process. 

/N-I \ /R-\ \ - l /N-R-\ \ - l 

Ha*)( ,H") (,a •") (4) 

in which the. three products are of the frequencies of the mol
ecule, the detached fragment, and the remaining fragment, 
respectively. The frequencies arise from the eigenvalues of the 
Wilson GF matrix;2 each v = (2Tr)-1X1/2. Then 

, //V-I \ 1/2 /R-I \ - 1 / 2 //V-K-1 \ - l / 2 

--(2T)-(^) (nx,) ( n x,) (5) 
The F matrix has force constants k along its diagonal, zero 
elsewhere. The G elements2 are 2/m, m being atomic mass, 
on the diagonal; —\/m for elements whose indices differ by 
1; zero elsewhere. The determinant of a matrix is the product 
of its eigenvalues. Therefore, for this model, (5) can be written 

-v = (2w)-i(2k/m)V2[DN-.l/DR-lDN-R-]y{2 (6) 

D being a determinant of size indicated by its subscript and 
having 1 for diagonal elements and — '/2 when indices differ by 
1, otherwise zero. The individual frequencies need not be 
known; however, we develop them in the case of later models 
for interest's sake. 

The simple determinants D can be evaluated either by 
general formula or by repeated expansion of minors 

Dn=(n+\)/2» (7) 

to be inserted in the ratio of Z)'s in (6). The other factor has the 
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Figure 1. A typical conformation of one of the molecular models. 

size of a typical unimolecular rate constant. 

v = (2*-)"l(k/m)V2[N/R{N - R)]1/2 (8) 
This shows us that for detachment of an end atom, R = N-
1, 

v = (2Tc)-\k/my'2[N/{N - l ) ] » / 2 — • (27r)-i(*/m)'/2 

(9) 

so that the rate constant is of reasonable size no matter how 
large the molecule. But for breaking a single bond in the middle 
of the molecule, R = N/2 and 

v = (27r)-'(A;/w)1/2(4/Ar)i/2 — ^ o 
N-

(10) 

so the RRKM treatment predicts that this reaction rate can 
be made as nearly vanishing as desired by adding more 
atoms.3 

Note here that there are a large number of nearly equivalent 
bonds along the chain. Summing over possible decomposition 
modes from both ends of the molecule toward the middle 
gives 

Nf! [NfR(N-R)]V2= 2[Nf(N- I)]1 /2 

R=I 

+ 2[N/2(N-DY'2 + ... 

whose ratio of successive terms approaches 1 for large R. The 
result is approximately proportional to N, so that on incorpo
rating (10), one finds the combined k for all bonds diverging 
as TV1/2 for large N. However, this is offset by the exp(—v) 
factors. For example, to break a 21 kcal terminal bond in the 
presence of TV 90 kcal bonds at RT = 0.6 kcal 

TV'/2 at exp(150)/exp(35); N c* 10100 

Other estimates also suggest that having strong bonds disso
ciate in preference to a weak one, by being present in over
whelming numbers, will not be a serious problem for molecules 
in the size range of our interest. 

More Realistic Models 

We catalog the nature of the model, what if any additional 
calculational difficulties are present, and whether the results 
differ from those described above. In most cases they do 
not. 

1500 -
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Figure 2. A frequency spectrum for one of the molecular models. There 
are no degenerate values; horizontal separation is for clarity only. 

Cyclic One-Dimensional Case. If the molecule has only 
stretching motions, but the fixed bond angle is other than 180° 
(Gu+] == cos 6/m rather than - 1 / w ) , the simplest ring mol
ecule may be studied. The determinant roots4 are 

X, = 2{1 + (cos 0)[cos (2m/N)]\, i = 1 , . . . , JV (11) 

for the cyclic case and 

X1 = 2{1 - (cos A)[COs (TT///V)]); i = 1 , . . . , (N - 1) (12) 

for the acyclic case. For a cyclic molecule of this model with 
an acyclic critical configuration, rate of bond breakage for a 
selected bond attains constant value for all N. 

A Specialized Bending Case. Single bending motion intro
duced independent of stretching at each atom, with a 180° 
equilibrium angle and a 135° torsional angle, produces a rel
atively easily analyzed case. The first two rows of the deter
minant5 are 

1 0 -V2 0 

0 1 0 (2/9)'/2 . . . (13) 

with continuation on an alternating-row basis. By minor ex
pansion the following recursion formulas are found; D and E 
represent two different types of determinants that occur in the 
expansion. 

(H) Dt - £ , - [ ( E / - i - 2D,-2/9)/4] 
£ f - A - i - [ 2 ( A - 2 - 4 - a / 4 ) / 9 ] 

With Z) i = E\ = 1 the evaluation can be carried out to large 
N very quickly by means of a short computer program. Limits 
are approached rapidly and the result is the same as for the 
nonbending cases. The same conclusion applies to other 
bending angles. 

Most General Cases. Full range of interactions are allowed 
here for the molecule. Both cyclic and acyclic cases were ex
amined to model the ring structures and polymeric long chains 
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correspondently. Beyond this point, experimental computer 
diagonalization of matrices is required. We used two6 con
ventional programs. One is for solution of GF matrix problems 
and the other is a diagonalization taken from a molecular 
quantum chemistry program (our matrices are all symmetric). 
The results from these programs checked one another and, 
whenever one was available, those from evaluation by formula. 
Evaluation was carried out up to 76 X 76, which was sufficient7 

for limiting behavior to be discerned. This usually oscillated 
somewhat for obtuse angles between even and odd members 
of the series; the amplitude died out sufficiently rapidly. In 
these calculations the bond angle was always 109° 28'; tor
sional angles of 0,45 (a helix), 60,135,180, and 210° (twisted 
/3 chain) were all examined. Force constants were represen
tative of C-C stretches and C-C-C bends. In the cyclic cases 
with acyclic critical configurations, two degrees of freedom 
have to be removed from the critical configuration to be con
sistent with our constrained mathematics, in which there is still 
one degree of bending freedom at each joint. A corresponding 
zero eigenvalue in the analysis is disregarded. 

For chain breaking the rate behavior for large N is the same 
as in the simplest one-dimensional case. 

For ring opening at a single bond the rates increase with N 
for some time, but might begin to level off at high TV. Further 
test on this is underway. 

There were several models studied in which there was con
certed ring opening at two bonds, intended to be as close as we 
can come at present to something like an enzyme-substrate 
complex: (a) two equivalent fragments; (b) R exactly 6; (c) R 
= 0.27V. No new behavior was observed, although there was 
considerable variation in the oscillatory disturbances and rates 
of approach to limits, the latter being faster in all cases. 

A picture of one of the conformations of our most realistic 
model is shown in Figure 1. A typical frequency spectrum for 
such a molecule appears in Figure 2. 

Conclusions 

The above survey convinces us of the following. 
(1) There is no visible a priori reason why the RRKM theory 

may not be applied to extremely large molecules. It should be 
the method of choice if its central assumption about rapid in
ternal energy relaxation proves feasible. 

(2) There appears to be no trend in the contents of this 
conclusion as the dimensionality of the mathematical treat

ment varies. For chain breaking, highly restricted structural 
frameworks seem to supply valid kinetic models. 

(3) Further investigation on the behavior of ring opening, 
which simulates the biological enzyme-substrate complexes, 
our long range interest, is underway. The preliminary analysis 
indicates a meaningful way in interpreting the dynamics of 
enzyme-catalyzed reaction rates. 

(4) It is appropriate and useful to compare the results of 
calculations like these with trajectory-averaged computational 
rate constants as a function of N, to test the actual rapidity of 
intramolecular relaxation. The model initially chosen for this, 
on account of the simple character of its Hamiltonian me
chanics, is the bending chain with tetrahedral equilibrium and 
0 or 45° torsional angles. Results will appear in sequel publi
cations. 
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